
Pure Subtype Systems

DeLesley S. Hutchins
MZA Associates Corporation

dhutchins@mza.com

Abstract
This paper introduces a new approach to type theory called pure
subtype systems. Pure subtype systems differ from traditional ap-
proaches to type theory (such as pure type systems) because the
theory is based on subtyping, rather than typing. Proper types and
typing are completely absent from the theory; the subtype relation
is defined directly over objects. The traditional typing relation is
shown to be a special case of subtyping, so the loss of types comes
without any loss of generality.

Pure subtype systems provide a uniform framework which
seamlessly integrates subtyping with dependent and singleton
types. The framework was designed as a theoretical foundation
for several problems of practical interest, including mixin modules,
virtual classes, and feature-oriented programming.

The cost of using pure subtype systems is the complexity of
the meta-theory. We formulate the subtype relation as an abstract
reduction system, and show that the theory is sound if the under-
lying reductions commute. We are able to show that the reductions
commute locally, but have thus far been unable to show that they
commute globally. Although the proof is incomplete, it is “close
enough” to rule out obvious counter-examples. We present it as an
open problem in type theory.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.3.2 [Log-
ics and Meanings of Programs]: Semantics of Programming Lan-
guages

General Terms Languages, Theory

Keywords subtyping, dependent types, singleton types, transitiv-
ity elimination, abstract reduction systems

1. Introduction
Type theory has traditionally drawn a sharp distinction between
objects, such as the number 3, and proper types, such as Int. Objects
can be used in computations, such as 3 + 5 −→ 8, whereas proper
types cannot; Int + 5 is not a valid expression. Types, on the other
hand, can be used to quantify over terms, whereas objects cannot;
the function λx : 3. x is not a valid expression either.

Because traditional type theory distinguishes between types and
objects, it must also distinguish between typing and subtyping.
Typing is relationship between objects and types, e.g. 3 : Int,
whereas subtyping is a relationship between types, e.g. Int ≤ Top.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

This paper introduces a new approach to type theory that we call
“pure subtype systems” which eliminates these distinctions. Pure
subtype systems differ from traditional type theory in the following
three ways:

1. Pure subtype systems do not distinguish between types and
objects. Every term can behave as either a type or an object
depending on context.

2. There is no typing relation. Typing is shown to be a special case
of subtyping.

3. The subtype relation is defined over all terms, not just types.

In a pure subtype system, objects can act as types. The number 3
is interpreted as a singleton type – it denotes the set of all terms that
are equal to 3. Likewise, the type Int can be used in computations:
Int + 5 −→ Int. Performing a computation with types is very
similar to abstract interpretation. A type denotes a set of possible
values, so the computation returns a set of possible results – i.e.
another type.

By eliminating the distinction between types and objects, we
also eliminate the distinction between typing and subtyping. If
objects are treated as singleton types, then the subtype relation can
be extended to cover objects as well as types. Once this has been
done, typing becomes superfluous, and can be eliminated from the
theory. An alternative title for this paper that we considered is:
“Sub-typing, a sub-stitute for typing.”

1.1 Terminology
Before going on, it is important to clarify some terminology. The
terms of a language include everything defined by the formal syn-
tax of the language. Most type theories divide terms into two or
three sorts, which are syntactically distinct. The two main sorts are
objects and types; many theories also define kinds.

The word “object” here refers to the objects of the theory, not to
“objects” in the sense of object-oriented programming. The word
“term” refers to any valid piece of syntax. Some authors in the
literature use the word “term” to denote objects, as distinct from
types; our use of the word “term” includes both objects and types.

1.2 History and Motivation
Pure subtype systems were invented as part of a broader effort to
develop a type theory for first-class, extensible, recursive modules
[18] [19]. This work is described in the author’s PhD thesis [19],
which gives a theory of mixin modules and virtual classes based on
pure subtype systems.

Modules present several challenges that are difficult to address
with more traditional approaches. First, we wished to combine
subtyping with dependent types, a combination that is tricky to
work with [3]. Second, we found ourselves defining the subtype
relation over objects as well as types.

Our theory of modules required dependent types because we
defined modules as records (i.e. objects) which could contain type
members. Ifm.T denotes the type member T within the modulem,

then m.T is a dependent type — a type expression which depends
upon the object m.

We used subtyping to handle module extension, which is similar
to object-oriented inheritance. In an OO language, inheritance is
intuitively related to subtyping because inheritance is a relationship
between classes, and classes are types. However, module extension
is a relationship between modules, and modules in our theory
were objects, not types. Thus, we extended the subtype relation to
include objects. Interestingly enough, Dreyer has come to a similar
conclusion in his most recent work; MixML unifies signatures (i.e.
types) and structures (i.e. modules) [14].

After working with the module system for a while, we realized
that we had uncovered a new way of doing type theory in general,
which was independent of the particular application to modules.
This paper presents the basic ideas of pure subtype systems within
the context of the familiar λ-calculus. We have based our presenta-
tion on Barendregt’s successful theory of pure type systems [4].

1.3 Summary of key results
In this paper, we compare and contrast pure subtype systems (PSSs)
with traditional approaches to type theory (Section 2), and we give
some examples which illustrate how PSSs can be used (Section
3). We demonstrate that subtyping completely subsumes typing
by embedding a pure type system in a PSS (Section 4), and we
show that PSSs are type-safe if a property known as transitivity
elimination holds (Section 5).

Subtyping is inherently harder to work with than typing, be-
cause subtyping is transitive, whereas typing is not. (Transitivity
states that if a ≤ b, and b ≤ c, then a ≤ c). The presence of a
transitivity rule makes it hard to prove an inversion or generation
lemma, which is a key part of most type safety proofs [26]. Stan-
dard practice is to prove a property called transitivity elimination,
which shows that transitivity, in its general form, can be removed
as an axiom of the system [26] [27] [10] [11].

In other theories of higher-order subtyping, such as System Fω≤,
transitivity elimination is one of the most difficult results to prove
(Section 8). Existing proofs rely on the fact that the language of
types is strongly normalizing (i.e. the evaluation of every type ex-
pression is guaranteed to terminate). Pure subtype systems, like
pure type systems, do not guarantee strong normalization, so ex-
isting proof techniques are not applicable.

Since a proof based on strong normalization is not possible, we
have pursued a proof technique based on confluence instead (Sec-
tion 6). We formulate the subtyping judgement as an abstract reduc-
tion system, and show that transitivity follows from commutativity
of the underlying reductions. We are able to show that the reduc-
tions commute locally, but we have not been able to show that they
commute globally.

Our partial proof is “close enough” to a full proof that the
obvious counter-examples can be ruled out. However, the ultimate
soundness of our technique remains an open question. Our hope is
that by presenting this work as an open problem (Section 7), we can
involve the larger research community in the quest for its solution.

2. From System Fω≤ to Pure Subtype Systems
We introduce pure subtype systems by way of an analogy. Pure sub-
type systems (or PSSs) generalize System Fω≤, the theory of higher-
order subtyping, in much the same way that pure type systems (or
PTSs) generalize System Fω , the theory of higher-order types.

2.1 Higher-order types and PTSs
Barendregt’s λ-cube classifies type theories into a hierarchy. The
simply-typed λ-calculus includes only one form of abstraction:
functions from objects to objects. System F adds polymorphism

in the form of functions from types to objects, and System Fω adds
higher-order types, which are functions such as List that map from
types to types.

System Fω is considerably more complex than its predecessor,
System F, because once functions have been added to the level of
types, it is possible to construct and evaluate expressions at the level
of types. In order to prove that such expressions are valid, type
expressions are assigned kinds, in exactly the same way that object
expressions are assigned types.

In System Fω as it is usually presented [26], objects, types, and
kinds are all syntactically distinct. System Fω defines no less than
six different pieces of syntax for λ-abstractions and their proper
types and kinds. In the following table, t and u range over objects,
T,U range over types, and K1,K2 range over kinds; x is an object
variable, while X is a type variable:

description abstraction proper type or kind
ordinary functions λx : T. u T → U
polymorphic objects λX : K. u ΠX : K.U
type operators λX : K1. U K1 → K2

Barendregt’s theory of pure type systems (PTSs) demonstrates
that this duplication of syntax is unnecessary. PTSs exploit the fact
that the reduction and inference rules are identical for both object
expressions and type expressions, so there is no need to distinguish
syntactically between the two. PTSs have a single syntax for λ-
abstractions, and a single syntax for proper types and kinds. Ob-
jects, types, and kinds are all terms, and the typing relation is de-
fined uniformly over terms. In the following (much simpler) table
for PTSs, s, t, u are terms, and x is a term variable:

abstractions λx : t. u Πx : t. s

2.2 A uniform syntax for functions with subtyping?
System Fω≤ extends System Fω with support for subtyping, and the
subtyping judgement must be defined over all of the various pieces
of syntax. It is tempting to try and reduce this complexity by using
the same trick that Barendregt used for PTSs, but in System Fω≤,
there is a problem. The following table lists the three forms of
abstraction in System Fω≤:

ordinary functions λx : T. u T → U
polymorphic objects λX ≤ T. u ΠX ≤ T.U
type operators λX ≤ T. U ΠX ≤ T.K

Notice that these three forms of abstraction quantify over a
variable in two different ways, using two different relations: typing
(e.g. x : T) and subtyping (e.g. X ≤ T).

A similar problem exists in System Fω between typing and kind-
ing. In order to unify the three forms of abstraction, PTSs combine
typing and kinding into a single relation which is defined over all
terms. If we are to unify the three forms of abstraction in System
Fω≤, along the same lines as PTSs, then we must necessarily com-
bine typing and subtyping into a single relation which is defined
over all terms. This observation is the key insight that underlies
pure subtype systems.

2.3 Unifying subtyping and kinding
The idea of using a single relation for both typing and subtyping
sounds radical, but it actually has a precedent in the literature. The
language of kinds in System Fω≤ is defined as:

K ::= ∗ | ΠX ≤ T. K
In System Fω≤, every kind is associated with a Top-type, the

supertype of all types which have that particular kind. The Top-
type of a kind K, written top(K), is:

top(∗) = Top
top(ΠX ≤ T. K) = λX ≤ T. top(K)

Thus, every abstraction of the form λX : K. u, in System Fω ,
can be replaced with an abstraction of the form λX ≤ top(K). u,
in System Fω≤, without loss of generality. In other words, subtyping
completely subsumes kinding.

What we shall show in this paper is that by extending the
subtype relation to cover all terms, subtyping can also subsume
typing. Every abstraction of the form λx : T. u can be replaced
with an abstraction of the form λx ≤ t. u for some t. Instead
of pure type systems, which are based upon typing, we obtain
the theory of pure subtype systems, which are based entirely upon
subtyping.

2.4 Unifying abstractions and proper types
Barendregt’s pure type systems still maintain a distinction between
functions, written λx : t. u, and proper types, written Πx : t. u.
Functions differ from Π-types in that functions are eliminated via
β-reduction (i.e. (λx : t. u)(s) −→ [x 7→ s]u), whereas Π-types
are eliminated by the following typing rule:

Γ ` f : (Πx : t. u) Γ ` s : t

Γ ` f(s) : [x 7→ s]u

As it turns out, the distinction between functions and Π-types
is yet another needless duplication of syntax. Recent work by
Kamareddine [21] has shown that Π-types are, in fact, unnecessary.
She presents an alternative system in which the type of a function
is simply another function, subject to the following constraint: if f
is a function, and f : F , then f(a) : F (a) for any valid argument
a. In Kamareddine’s system, the rule for eliminating Π-types is
subsumed by ordinary β-reduction.

As it turns out, a very similar simplification arises in pure
subtype systems. In section 2.3, we saw that the top-type of a kind
ΠX ≤ T. K is a function: λX ≤ T. top(K). The act of replacing
kinded quantification (i.e.X : K) with bounded quantification (i.e.
X ≤ top(K)) has a consequence: it also eliminates all Π-types,
replacing them with λ-abstractions.

In pure subtype systems, the six pieces of syntax found in
System Fω≤ for functions and proper types are all unified into a
single piece of syntax: λx ≤ t. u.

2.5 Deconstructing the typing judgement
In most traditional type theories, including pure type systems, the
type of a term provides three distinct pieces of information:

1. The type of a term describes the shape of the value that will be
produced when the term is evaluated.

2. Terms which can be assigned types are said to be well-typed.
The evaluation of a well-typed term will not generate type
errors at run-time.

3. The type or kind of a term describes the level or universe in
which the term resides.

In pure subtype systems, these three pieces of information are split
into separate judgements which are largely orthogonal:

1. Subtyping compares the shape of terms.
2. The evaluation of a well-formed term will not generate type

errors.
3. An (optional) universe judgement determines the universe in

which the term resides.

Subtyping and typing have a significant amount of overlap be-
cause they are both judgements about shape. For example, the

judgement t : U → S means that when t is evaluated, the re-
sult will be a function that accepts arguments of type U . Similarly,
T ≤ (λX ≤ U. S) means that when the type expression T is eval-
uated, it will produce a function which accepts arguments that are
subtypes of U .

However, typing also provides a piece of information that sub-
typing does not – a guarantee that evaluating the term will not pro-
duce any type errors. Subtyping can be used as a substitute for
typing with regard to shape, but not with regard to program cor-
rectness. Pure subtype systems rely on a well-formedness judge-
ment to ensure program correctness. The usual approach to prov-
ing type safety – “well-typed terms don’t go wrong” – becomes
“well-formed terms don’t go wrong.”

The third piece of information, universes, is optional. Tradi-
tional type theories usually include at least two universes: the uni-
verse of objects, and the universe of types. When Barendregt for-
mulated pure type systems, he showed that the basic theory is the
same for any universe structure; the universe structure is a param-
eter of the theory. The same principle holds for pure subtype sys-
tems. For the sake of simplicity, this paper describes a theory with
only a single universe, but we will briefly show that it is possible to
add other universe structures as well.

3. System λC

Figure 1 introduces System λC. System λC is the simplest pure
subtype system that we could devise; it is a typed λ-calculus with
a single universe.

Functions are written: λx ≤ t. u. Both the type bound t and
the function body u are ordinary terms. Functions use bounded
quantification rather than typing; the above function can be applied
to any term that is a subtype of t.

Top is a universal supertype; every well-formed term t is a
subtype of Top. This interpretation of Top differs from System
Fω≤. In System Fω≤, Top is only a supertype of the proper types
(the types of objects), it is not a supertype of type operators. As
will be discussed in Section 4.2, our interpretation of Top makes
System λC fully impredicative, which has important consequences
for decidability.

Unlike pure type systems, the dependent type Πx : t. u is not
a part of the syntax; this type is subsumed by ordinary functions.
The arrow type t→ u is not present either, for the same reason. We
treat t → u as syntactic sugar for an ordinary function λx ≤ t. u,
where x is chosen fresh and does not appear in u.

3.1 Subtyping
Figure 1 gives the declarative formulation of subtyping, (as distinct
from algorithmic subtyping, which we will introduce later), so the
rules are named (DS-Name). Our naming scheme for rules dis-
tinguishes between congruence rules like (DS-APP), which com-
pare terms of similar shape (i.e. functions with functions, or ap-
plications with applications), and reduction rules like (DS-EAPP),
which compare terms of different shape.

In order to make the presentation as compact as possible, we use
C as a metavariable that ranges over both the subtype relation (≤),
and the type equivalence relation (≡). This particular presentation
style is the reason why we call the calculus System λC. Each rule
that is given in terms of C thus defines two different rules. For
example, the rule for application (DS-APP) actually denotes the
following:

Γ ` t C t′, u ≡ u′

Γ ` t(u) C t′(u′)
means

Γ ` t ≤ t′, u ≡ u′

Γ ` t(u) ≤ t′(u′) and
Γ ` t ≡ t′, u ≡ u′

Γ ` t(u) ≡ t′(u′)

Syntax:

x, y, z Variable

s, t, u ::= Terms
x variable
Top universal supertype
λx ≤ t. u function
t(u) application

v, w ::= Values
Top universal supertype
λx ≤ t. u function

Γ ::= Type Contexts
∅ empty context
Γ, x ≤ t variable

C ::= Type relations
≤ subtype
≡ type equivalence

Reduction: t −→ t′

t −→ t′

C[t] −→ C[t′]
(E-CONG)

(λx ≤ t. u)(s) −→ [x 7→ s]u (E-APP)

Context well-formedness: Γ wf

∅ wf (W-GAM1)

Γ wf x 6∈ dom(Γ)
Γ ` t wf

Γ, x ≤ t wf
(W-GAM2)

Well-formedness: Γ ` t wf

Γ wf x ∈ dom(Γ)

Γ ` x wf
(W-VAR)

Γ wf
Γ ` Top wf

(W-TOP)

Γ, x ≤ t ` u wf
Γ ` λx ≤ t. u wf

(W-FUN)

Γ ` t ≤wf λx ≤ s. Top
Γ ` u ≤wf s

Γ ` t(u) wf
(W-APP)

Well-subtyping: Γ ` t Cwf u

Γ ` t wf, u wf
Γ ` t C u

Γ ` t Cwf u
(W-SUB)

Subtyping: Γ ` t C u

Γ ` s C t, t C u, t wf
Γ ` s C u

(DS-TRANS)

Γ ` u ≡ t
Γ ` t ≡ u

Γ ` t ≡ u
Γ ` t ≤ u

(DS-SYM)
(DS-EQ)

Γ ` x ≡ x (DS-VAR)

Γ ` Top ≡ Top (DS-TOP)

Γ ` t ≡ t′
Γ, x ≤ t ` u C u′

Γ ` λx ≤ t. u C λx ≤ t′. u′ (DS-FUN)

Γ ` t C t′, u ≡ u′

Γ ` t(u) C t′(u′)
(DS-APP)

Γ ` (λx ≤ t. u)(s) ≡ [x 7→ s]u (DS-EAPP)

Γ ` t ≤ Top (DS-ETOP)

x ≤ t ∈ Γ

Γ ` x ≤ t (DS-EVAR)

Notation:
• C is a context with a hole: C ::= [] | C(t) | t(C) | λx ≤ C. t | λx ≤ t. C.
• C[t] denotes the context C with the term t substituted for the hole [] in the context.
• [x 7→ t]u denotes the capture-avoiding substitution of the term t for the variable x within u.
• fv(t) denotes the set of free variables in the term t.
• dom(Γ) denotes the set of variables defined in Γ.
• x ≤ t ∈ Γ is true if the type context Γ contains x ≤ t.
• Note that C is a meta-variable which ranges over ≤ and ≡.
• For compactness, we adopt the following convention:

A pair of judgements Γ ` J1 and Γ ` J2 which are both made within the same type context Γ are written as Γ ` J1, J2.

Figure 1. System λC — syntax, operational semantics, and declarative subtyping

3.2 Point-wise subtyping
The subtyping judgement for System λC has been lifted almost ver-
batim from System Fω≤. In fact, System λC is essentially a fragment
of System Fω≤, a fragment that only contains type operators.

Simpler theories of subtyping, such as System F≤, only de-
fine the subtype relation over proper types (i.e. arrow or Π-types),
which are the types of objects. Each proper type denotes a set of ob-
jects. The subtype relation between proper types thus corresponds
to the subset relation between sets; a type T is a subtype of U if
and only if every object of type T is also an object of type U .

System Fω≤ extends the subtype relation to include type oper-
ators (a.k.a. higher-order types). However, type operators do not
denote sets of objects; they denote functions over types. Thus, the
idea that “subtypes are subsets” is no longer sufficient. The primary
insight behind System Fω≤ is that it is possible to define a meaning-
ful subtype relation directly over functions.

System Fω≤ uses a pointwise subtyping rule: given two type
operators F and G, F ≤ G if and only if F (A) ≤ G(A) for any
valid argument A. Notice the similarity between this definition of
pointwise subtyping, and the definition of pointwise typing found
in Kamareddine’s theory, which was described in Section 2.4.

System λC uses the same point-wise subtyping rule found in
System Fω≤. However, every term in System λC can be interpreted
as a type, so every function can be interpreted as a type operator.

3.3 Contravariance
Subtyping in System λC differs from that in System Fω≤ in one
respect: the argument type of a function is invariant rather than
contravariant in subtypes. That is to say, (λx ≤ t. u) ≤ (λx ≤
t′. u) only if t ≡ t′. Although contravariance is a potentially useful
extension, it also results in several well-known pathologies [25].
The practical applications of System λC that we have explored
thus far (i.e. modules) do not require contravariance, so we have
not included it in the theory. A further discussion of this issue can
be found in [19].

3.4 Well-formedness
The subtype relation is defined only over terms that are well-
formed. For clarity of presentation, however, we have chosen to
define the ≤ relation syntactically, omitting the well-formedness
checks. The complete subtype relation is written as t ≤wf u,
(pronounced “t is a well-subtype of u”). Any derivation of t ≤wf u
only compares well-formed subterms of t and u.

The well-formedness judgement makes the following type
checks:

• It ensures that the program is well-scoped: every variable x
must be defined within the typing context.

• In a function application t(u), it ensures that t is a function, and
that u is a subtype of the argument type of that function.

3.5 Example: 3 ≤ Nat

To illustrate how System λC works, we show how Nat, the type
of natural numbers, and the number 3, can both be encoded in the
standard way using Church numerals [26]. We further show that 3
is a subtype of Nat.

Nat = λx ≤ Top. (x→ x)→ x→ x
= λx ≤ Top. λf ≤ (λy ≤ x. x). λa ≤ x. x

3 = λx ≤ Top. λf ≤ (λy ≤ x. x). λa ≤ x. f(f(f(a)))

Recall that the standard arrow-type t → u is syntax sugar for
λy ≤ t. u. To show that 3 ≤ Nat, we show that:
Γ, f ≤ (λy ≤ x. x), a ≤ x ` f(f(f(a))) ≤ x, as follows:

Γ, f ≤ (λy ≤ x. x), a ≤ x `
f(f(f(a))) ≤ (λy ≤ x. x)(f(f(a))) by DS-EVAR

≡ x by DS-EAPP

The encoding shown above is not specific to System λC. It
would be perfectly valid in System Fω≤ as well, if 3 and Nat were
encoded at the level of types, rather than the level of objects.

3.5.1 Singleton types and abstract interpretation
Although System λC does not formally distinguish between types
and objects, there is still a semantic difference between the two. The
number 3 is a singleton type; it has no subtypes other than itself.
(A subtype of 3 could only be constructed by finding a subtype of
f , and that’s not possible because f is a variable which does not
appear in the bounds of other variables.)

The number 3 can be interpreted as either a type or an object.
As an object, the number 3 can be used in computations, such as
being added or multiplied by other numbers. When used as a type
(e.g. λx ≤ 3. x + x), it is the type of all natural numbers that are
equal to 3.

Similarly, Nat can be interpreted as either a type or an object.
As a type, it is the type of natural numbers. As an object, it can be
used in computations just like any other number. Using the standard
Church encodings for addition and multiplication, we get:

Nat + n = Nat for any n
Nat * n = Nat for any n

The evaluation of such expressions is somewhat similar to ab-
stract interpretation. When an abstract type like Nat is used as an
object, it represents an unknown value. It is possible to perform
computations with such values, but the result will also be unknown
– i.e. a type.

3.6 Adding Universes
The number 3 is a subtype of Nat because they both have a similar
shape. They are both functions, and they both accept the same
number and the same type of arguments. This definition is sufficient
to build a static type system.

However, in practical programming, we may also wish to ensure
that a given computation will return an actual number, like 0 or
5, rather than a type, like Nat. Subtyping does not make this
distinction, but it easy to add a universe judgement which does.

There are many ways in which a universe judgement can be
constructed, with varying degrees of sophistication; what follows
is one of the simplest ways. Terms are divided into two universes:
0 is the universe of objects, and 1 is the universe of types. In order
to distinguish between these universes, the syntax of System λC

must be extended so that variables are tagged with their universe.
Object variables are written as x0 or y0, while type variables are
written as x1 or y1:

J,K ::= 0 | 1
s, t, u ::= xK | Top | λxK ≤ t. u | t(u)

Once variables have been tagged with their universe, the judge-
ment t ∈ U(K) determines whether a term t is an object or a type:

xK ∈ U(K)
Top ∈ U(1)
λxJ ≤ t. u ∈ U(K) if u ∈ U(K)
t(u) ∈ U(K) if t ∈ U(K)

Note that a function is in universe K if its body is in K, regard-
less of what universe its argument is in. This simple model allows
a function in any universe to quantify over any other universe, and
thus supports both parametric polymorphism (objects that depend
on types) and dependent types (types that depend on objects).

The well-formedness rule for function application must also
be modified to ensure that function arguments are in the correct
universe:

Γ ` t ≤wf (λxK ≤ s. Top), u ≤wf s u ∈ U(K)

Γ ` t(u) wf
It is easy to see that universes are preserved under β-reduction,

because a variable in universeK is replaced with a term in universe
K. Moreover, by extending our definitions of 3 and Nat with
universe tags, it also clear that 3 is an object (i.e. 3 ∈ U(0)), and
Nat is a type:

Nat=λx1 ≤ Top. λf0 ≤ (x1 → x1). λa0 ≤ x1. x1

3 =λx1 ≤ Top. λf0 ≤ (x1 → x1). λa0 ≤ x1. f0(f0(f0(a0)))

We present universes as a curiosity. The universe judgement
shown here is completely orthogonal to subtyping, so the presence
or absence of universes does not affect any of the results that we
present in this paper. The subtype relation is still defined over all
terms in all universes. In particular, subtyping can cross universe
boundaries: objects are still subtypes of types. In the interest of
simplicity, the rest of this paper will be devoted to the version of
System λC with only a single universe.

4. Embedding of a Pure Type System
To show that pure subtype systems are comparable in expressive
power to pure type systems, we show that System λ∗ can be em-
bedded in System λC. System λ∗ is a PTS described by Barendregt
[4], which supports polymorphism, type operators, and dependent
types. It has a single sort ∗, and the typing relation ∗ : ∗. The em-
bedding is as follows:

〈x〉 = x
〈∗〉 = Top

〈λx : t. u〉 = λx ≤ 〈t〉. 〈u〉
〈Πx : t. u〉 = λx ≤ 〈t〉. 〈u〉
〈t(u)〉 = 〈t〉(〈u〉)

〈∅〉 = ∅
〈Γ, x : t〉 = 〈Γ〉, x ≤ 〈t〉

Lemma 4.1 (Substitution is preserved under translation)
〈[x 7→ t]u〉 = [x 7→ 〈t〉]〈u〉

Proof: By straightforward induction on u. �

Theorem 4.2 (Reduction is preserved under translation)
If t −→ u then 〈t〉 −→ 〈u〉.

Proof: By induction on the derivation of t −→ u, using lemma 4.1
for the base case. �

Theorem 4.3 (Typing is preserved under translation)
If Γ ` t : u then 〈Γ〉 ` 〈t〉 ≤wf 〈u〉.

Proof: By induction on the derivation of t : u. Full details can be
found in the author’s PhD thesis [19]. �

4.1 Caveat: Pure Type Systems and Universes
The calculus of constructions can be embedded in System λC using
a similar technique, as can all the other members of Barendregt’s
λ-cube. The embedding shown above thus demonstrates that sub-
typing is expressive. However, our embedding does not enforce the
restrictions that differentiate the various members of the λ-cube.

Every PTS comes equipped with a universe structure (i.e. the
sorts) and a set of rules that restricts the ways in which functions in

one universe can quantify over other universes. It is easy enough to
add universes to a pure subtype system, but it is not so easy to en-
force universe restrictions. Pure subtype systems have an additional
symmetry because they unify λ-abstractions and Π-types, and that
symmetry means that anything which is allowed in one universe
must be allowed in the others.

For example, the simply-typed λ-calculus has two universes,
objects and types, but it only permits functions that map from
objects to objects. However, in a pure subtype system the arrow-
types become functions, e.g. Int → Int becomes λx ≤ Int. Int.
There is thus no way to permit functions from objects to objects
without also permitting functions from objects to types. There is
no “simply-typed” version of a pure subtype system.

4.2 Impredicativity and Girard’s Paradox
Although System λ∗ is both elegant and expressive, it also has
a well-known flaw. It admits Girard’s paradox, and is thus not
strongly normalizing [4]. Its embedding thus demonstrates that
System λC is not strongly normalizing either.

Theorem 4.4 (System λC is not strongly normalizing.)

Proof: According to Girard’s paradox, there exists a well-typed
term in System λ∗ that has no normal form, and thus has an infinite
reduction sequence [4]. According to theorem 4.3, the translation
of this term is well-formed in System λC, and by theorem 4.2, the
translation also has an infinite reduction sequence. �

A skeptic might argue that Girard’s paradox in System λ∗ stems
from the circular ∗ : ∗ rule, which confuses the universe of types
and the universe of objects, and since System λC confuses the two
universes much more thoroughly, it is not surprising that it suffers
from the same problem. However, this argument is not correct. As
Barendregt explains, Girard’s paradox can also be found in System
λU, another pure type system which has no such circularity [4].

The cause of Girard’s paradox is impredicativity. A Π-type is
impredicative if the type variable quantifies over the Π-type itself.
Such types can be used to build functions that can be applied to
themselves, which are the basis for non-terminating expressions.

It is possible for a type theory to be both impredicative and
strongly normalizing; Girard’s System F [16] and Luo’s extended
calculus of constructions (ECC) [23] are two well-known exam-
ples. However, great care is required. Both of these systems place
tight controls on impredicativity; System F controls it by being
relatively simple, while ECC uses a sophisticated universe struc-
ture that restricts impredicativity to the universe of propositions;
all other universes are predicative.

System λC suffers from Girard’s paradox because it places
no constraints on impredicativity. All terms belong to a single
universe, and Top is both a member of the universe, and a type
that ranges over all elements of the universe.

We believe, but have not yet proven, that strong normalization
could be restored to pure subtype systems by either removing
Top, which is the source of the impredicativity, or by using a
more sophisticated universe judgement with stronger restrictions.
In the meantime, however, we shall explore the meta-theory of pure
subtype systems under the assumption that strong normalization
does not hold, just as Barendregt does when developing the meta-
theory for pure type systems.

5. Type Safety
This section shows that System λC is type-safe so long as subtyp-
ing has the transitivity elimination property. Transitivity elimina-
tion is the subject of the Section 6.

Our proof of type safety is an adaptation of the standard tech-
nique of progress and preservation [31]. In a traditional type sys-
tem, progress states that “well-typed terms don’t get stuck”; i.e. if
t : T , then t must either be a value, or there exists a t′ such that
t −→ t′. Preservation states that reducing a term will not change
its type; if t : T and t −→ t′, then t′ : T .

In System λC we prove a similar result for subtyping and well-
formedness. We show that “well-formed terms don’t get stuck”, and
well-formedness is preserved under reduction. The following proof
is only a sketch; the complete proof can be found in [19]. Note that
we use a, b, c in addition to s, t, u as meta-variables for terms.

Conjecture 5.1 (Transitivity elimination)
If Γ ` v ≤wf w, then there exists a proof of Γ ` v ≤ w that

ends in either (DS-FUN) or (DS-ETOP).

Lemma 5.2 (Inversion of subtyping — declarative version)
If Γ ` (λx ≤ t. u) ≤wf (λx ≤ t′. u′) then Γ ` t ≡ t′.

Proof: By conjecture 5.1 (transitivity elimination). �

Lemma 5.3 (Reduction implies equivalence)
If t −→ t′, then Γ ` t ≡ t′.

Proof: By induction on the derivation of t −→ t′. The base case is
by rule (DS-EAPP). �

Lemma 5.4 (Substitution)
If Γ, x ≤ t,Γ′ ` u Cwf s and Γ ` t′ ≤wf t

then Γ, [x 7→ t′]Γ′ ` [x 7→ t′]u Cwf [x 7→ t′]s.

Proof: By induction on the derivation of u Cwf s. Every derivation
of the form x wf is replaced with t′ wf, and every derivation of the
form x ≤ t is replaced with t′ ≤ t. �

Theorem 5.5 (Progress)
If ∅ ` t wf then either t = v for some v (i.e. t is a value), or

there exists a t′ such that t −→ t′.

Proof: By induction on the derivation of t wf. The proof is by
straightforward analysis of cases; see [19] for details. �

Theorem 5.6 (Preservation)
If Γ ` t ≤wf u and t −→ t′ then Γ ` t′ ≤wf u.

Proof: By induction on the derivation of t wf.

The proof has two parts.
For the first part of the proof, we show that if t ≤ u, and t −→

t′, then t′ ≤ u. By lemma 5.3 (reduction implies equivalence)
t ≡ t′. It follows that t′ ≤ u using rule (DS-TRANS).

For the second part of the proof, we show that t wf and t −→ t′

implies t′ wf. The proof is by induction on the derivation of t wf,
and the most interesting case is as follows:

Case t = (λx ≤ a. b)(c) −→ [x 7→ c]b.
The two premises of t wf are (λx ≤ a. b) ≤wf (λx ≤ a′.Top), and
c ≤wf a

′. We have a ≡ a′ by lemma 5.2 (inversion of subtyping),
which gives us c ≤wf a by rule (DS-TRANS). We then have
[x 7→ c]b wf by lemma 5.4 (substitution). �

6. Transitivity Elimination
The definition of subtyping given in Figure 1 is known as declar-
ative subtyping. The declarative definition is easy to read, and it is

also easy to prove certain lemmas, such as substitution and narrow-
ing. However, the declarative definition is problematic because it
includes a transitivity rule:

Γ ` s ≤ t, t ≤ u, t wf
Γ ` s ≤ u (DS-TRANS)

Transitivity is troublesome for two reasons. The first problem
is that declarative subtyping is not an algorithm, because it is not
syntax-directed; there is a term t in the premises that is absent
in the conclusion. There is therefore a practical need to find a
different formulation of subtyping that can be implemented within
a compiler.

The second, more serious problem is that the presence of a tran-
sitivity rule prevents us from completing the proof of type safety.
The type safety proof given earlier has the following step: given a
well-formed redex (λx ≤ a. b)(c), we must show that [x 7→ c]b
is well-formed. This seems like a straightforward application of
the substitution lemma, but the substitution lemma requires that
c ≤ a. We do not actually have a proof that c ≤ a; instead, well-
formedness tells us that:

(1) (λx ≤ a. b) ≤ (λx ≤ a′. Top) and
(2) c ≤ a′

If the derivation of (1) ends in rule (DS-FUN), then we have
a ≡ a′, and consequently c ≤ a, so the substitution lemma applies.
However, if the derivation of (1) ends in rule (DS-TRANS), then
there is no immediate relationship between a and a′. If a and a′ are
unrelated, then the substitution lemma cannot be applied, and the
proof of type safety cannot be completed.

The standard technique for resolving this problem is to refor-
mulate the subtype relation into an algorithmic form that does not
include a transitivity rule, a process called transitivity elimination
[26] [27] [10] [11]. In essence, transitivity elimination is a proof
that subtyping is sound. After all, if the subtyping rules allowed us
to derive that (λx ≤ a. b) ≤ (λx ≤ a′. Top), where a 6≡ a′, then
there would clearly be an error in the theory.

The remainder of this section provides a partial proof of tran-
sitivity elimination. Although the proof is incomplete, our proof
technique is novel, and we believe it offers insight into the funda-
mental problem.

6.1 Subtyping as an abstract reduction system
The problems caused by the transitivity rule are not restricted to
subtyping. They arise in any system which has a non-trivial notion
of type equivalence, including all higher-order type theories. Equiv-
alence is a relation which is reflexive, symmetric, and transitive.
The standard technique for dealing with equivalence is to formu-
late the equivalence rules as an abstract reduction system (ARS)
[26]. In an ARS, t ≡ u if and only if there exists an s such that
t −� s�− u.

ARSs do not have a symmetry or transitivity rule, so transitivity
elimination is an immediate property of the system. Moreover, if
the reduction system is confluent, then transitivity is admissible,
which means that it can be derived from first principles.

We adopt this same technique for algorithmic subtyping in Sys-
tem λC. Unlike equivalence, subtyping is an inequality rather than
an equality, and that affects the way in which we define the relation.

The algorithmic formulation of subtyping for System λC is
presented in Figure 2. Most of the rules in the declarative sys-
tem, including (DS-VAR), (DS-TOP), (DS-APP) and (DS-FUN),
involve comparisons between terms which have the same shape.
These rules become congruence rules in the reduction system.

That leaves three remaining rules to consider: (DS-EAPP),
(DS-EVAR), and (DS-ETOP). We reformulate these three rules
as reduction rules. An equivalence reduction, written t ≡−→ t′, de-

Prevalidity: Γ prevalid

∅ prevalid (P-CTX1)

Γ prevalid x 6∈ dom(Γ)
fv(t) ⊆ dom(Γ)

Γ, x ≤ t prevalid
(P-CTX2)

Subtyping: Γ À t C u

Γ prevalid
Γ À t C t

(AS-REFL)

Γ À t
C−→ t′, t′ C u

Γ À t C u
(AS-LEFT)

Γ À u
≡−→ u′, t C u′

Γ À t C u
(AS-RIGHT)

Transitive Subtyping: Γ À t C∗ u

Γ À s C u
Γ À s C∗ u

(AST-SUB)

Γ À s C∗ t, t C∗ u

Γ À s C∗ u
(AST-TRANS)

Subtype reduction: Γ À t
≤−→ t′

Γ prevalid x ≤ t ∈ Γ

Γ À x
≤−→ t

(SRS-PROM)

Γ prevalid

Γ À t
≤−→ Top

(SRS-TOP)

Equivalence reduction: Γ À t
≡−→ t′

Γ À s ≤∗ t
Γ À (λx ≤ t. u)(s)

≡−→ [x 7→ s]u
(SRE-APP)

Γ prevalid

Γ À Top(t)
≡−→ Top

(SRE-TOPAPP)

Congruence rules: Γ À t
C−→ t′

E≡ ::= [] | E≡(t) | t(E≡) | λx ≤ E≡. t

E≤ ::= [] | E≤(t)

Γ À t
C−→ t′

Γ À EC[t]
C−→ EC[t′]

(SR-CONG)

Γ, x ≤ t À u
C−→ u′

Γ À λx ≤ t. u C−→ λx ≤ t. u′
(SR-FUN)

Γ À t
≡−→ t′

Γ À t
≤−→ t′

(SR-EQ)

Figure 2. System λC— algorithmic subtyping
.

notes a rewrite step which produces a term t′ that is equivalent to
t. β-reduction (SRE-APP) falls into this category. Subtype reduc-
tion, written t

≤−→ t′, denotes a rewrite step which produces a term
t′ that is a supertype of t. Variable promotion (SRS-PROM) and
Top-promotion (SRS-TOP) fall into this category.

An equivalence reduction step t
≡−→ t′ can be applied any-

where in a term. A subtype reduction step t
≤−→ t′ can only be

applied in positive (i.e. covariant) positions within a term. Positive
positions are limited to function bodies and the left-hand side of
applications. We express this requirement by means of two evalu-
ation contexts: E≡ may have a hole in any position, whereas E≤
may only have a hole in positive positions. Neither evaluation con-
text can step inside a λ-abstraction. Unlike ordinary reduction, both
subtype and equivalence reduction must be done within a context
Γ that assigns bounding types to variables. Rule (SR-FUN) is used
to reduce terms inside λ abstractions.

Within this framework, we define type equivalence and subtyp-
ing as follows, where

C
−� denotes the reflexive and transitive clo-

sure of C−→, and u ≡←− t means the same thing as t ≡−→ u.

• Γ À t ≡ u iff Γ À t
≡
−� s

≡
�− u for some s.

• Γ À t ≤ u iff Γ À t
≤
−� s

≡
�− u for some s.

The definition of type equivalence is standard. Two terms t
and u are equivalent if they both reduce to a common term. The
definition of subtyping is similar. The only difference is that for
subtyping, the reduction sequence for t may promote variables to
supertypes, or subterms to Top as necessary.

Within this framework, basic meta-theoretic properties of sub-
typing follow directly from standard properties of the correspond-
ing reductions. In particular, if ≡−→ and

≤−→ commute, then subtyp-
ing is transitive. If ≡−→ and

≤−→ were strongly normalizing (which
they are not), then the subtype judgement would be decidable.

6.2 Resolving circularities
In the declarative definition of subtyping, the subtype relation is
defined only over well-formed terms. This introduces a circularity
between subtyping and well-formedness that is difficult to unravel.
The algorithmic definition of subtyping breaks this circularity by
defining the subtype relation over all terms, not just well-formed
ones, and that necessitates a few changes to the system.

The first change is there is a new reduction rule: (SRE-
TOPAPP). Since algorithmic subtyping is defined over ill-formed
terms, we must supply an interpretation for ill-formed applications.
The need for this rule is explained in section 6.6.1.

The second change is that rule (SRE-APP) has a premise that
does not exist in the declarative system. The redex (λx ≤ t. u)(s)
can only be eliminated if s is a subtype of t. This premise will

always be satisfied if the redex is well-formed. However, since
redexes may not be well-formed, the algorithmic system performs
a “dynamic type check” before eliminating the redex.

It is important to notice that the premise of (SRE-APP) is
defined with ≤∗, the transitive closure of subtyping, rather than
≤, which is ordinary subtyping. There are two reasons for this
decision. Both reasons are related to the fact that, in the proofs that
follow, we shall attempt to show that

≤−→ and ≡−→ commute.
The first reason is that the reduction rules constitute a condi-

tional rewrite system [5], because rule (SRE-APP) has a premise,
or condition. If the condition were specifed as s ≤ t, then it would
be a join condition, and Bergstra and Klop have shown that join
conditions cause commutativity to fail [5]. By defining the condi-
tion with ≤∗, we avoid this pitfall.

The second reason is related. The diagrams of commutativity
make use of two key lemmas: substitution and narrowing, in order
to show that the premise of (SRE-APP) is satisfied on both sides
of the diagram. Both of these lemmas require transitivity. Transitiv-
ity follows from commutativity, but that would be a circular proof.
This potential circularity is eliminated by using ≤∗, which is tran-
sitive by definition.

6.3 Confluence and Commutativity
We shall now attempt to prove that transitivity is admissible in the
algorithmic system. This property is the same as transitivity elim-
ination in the declarative system; we must show that any subtype
derivation which makes use of transitivity can be rewritten as one
that that does not.

In a simple ARS, transitivity follows from confluence. However,
algorithmic subtyping is not simple, because there are two kinds of
reduction:

≤−→, and ≡−→. Moreover, the two kinds of reduction are
not orthogonal; ≡−→ implies

≤−→ by (SR-EQ). The exact property
that we require is thus more specific than ordinary confluence.

The
≤−→ relation by itself is trivially confluent, because (t

≤−→
Top) can be used as the completing edges of any diagram. The two
non-trivial properties that we are interested in are shown below.

Theorem 6.1 (≡−→ is confluent)
If Γ À t0

≡
−� t1, t0

≡
−� t2, then there exists a t3, such that

Γ À t1
≡
−� t3, t2

≡
−� t3.

Conjecture 6.2 (≡−→ commutes with ≤−→)
If Γ À t0

≡
−� t1, t0

≤
−� t2 then there exists a t3, such that

Γ À t2
≡
−� t3, t1

≤
−� t3.

These properties are illustrated by the following diagrams:

t2
≡ // // t3

t0

≡

OOOO

≡
// // t1

≡

OOOO
t2

≡ // // t3

t0

≤

OOOO

≡
// // t1

≤

OOOO

The solid lines of a confluence diagram are the spanning edges,
and represent the premises, while the dotted lines are the complet-
ing edges, and represent the conclusion.

Lemma 6.3 (Commutativity implies transitivity)
If ≡−→ commutes with

≤−→, then transitivity is admissible.

Proof: Assume we have Γ À s C t and Γ À t C u. If
≡−→ commutes with

≤−→, then we can construct a derivation of
Γ À s C u, according to the following diagram:

u
≡ // // · ≡ // // ·

t

≤

OOOO

≡
// // ·

≤

OOOO

s

≤

OOOO

�

6.4 Confluence: a brief digression
Confluence (or commutativity) is a fundamental property of any
abstract reduction system. However, the idea of “confluence” en-
compasses three properties of interest:

· // ·

· //

OO

·

OO · // // ·

· // //

OOOO

·

OOOO
· // // ·

· //

OO

·

OOOO

diamond
property

global
confluence

local
confluence

It is seldom possible to prove global confluence directly, be-
cause the spanning edges of the diagram have an arbitrary number
of reductions. Instead, most proofs start with either the diamond
property or local confluence, which have only a single reduction on
the spanning edges, and can thus be proven by simple analysis of
all possible cases.

The diamond property implies gobal confluence because any
global confluence diagram can be filled in, or “tiled” with single-
step diagrams. Local confluence can also be used to “tile” a dia-
gram, but in the case of local confluence, the tiling process is not
guaranteed to terminate, because local confluence “tiles” may have
multiple reductions on their completing edges.

There are several ways to prove global confluence from local
confluence, of which Van Oostrom’s technique of decreasing dia-
grams is perhaps the most general [30] [22]. The decreasing dia-
grams technique states that a reduction system is globally conflu-
ent if it is locally confluent, and if the elementary diagrams of local
confluence have the following form:

·
<β // // · α // ·

<α,<β// // ·

·

<α,<β

OOOO

·

β

OO

·

β

OO

α
// ·

<α

OOOO

The technique assigns indices (i.e. α, β) to reductions. The
indices are drawn from a set with a well-founded order. Each of
the additional reductions on the completing edges have a smaller
index than the reductions on the spanning edges, and this fact is
used to show that the tiling process terminates.

6.5 Proof that ≡−→ is confluent
Our proof is an adaptation of Takahashi’s proof of confluence for
the untyped λ-calculus [29] [6], which shows that simultaneous
reduction has the diamond property. Full details can be found in
[19].

6.6 Commutativity of ≤−→ and ≡−→
The last step in the proof of transitivity elimination is to show that
≤−→ and ≡−→ commute. Unfortunately, it is here that our proof

technique breaks down. We can show that
≤−→ and ≡−→ commute

locally, but we have thus far been unable to show that they commute
globally. In fact, the actual property we prove is not even local
commutativity per se, but something quite similar:

Lemma 6.4 (≤−→ and ≡−→ commute locally)
If Γ À t0

≡−→ t1, t0
≤−→ t2, then there exists a t3,

such that Γ À t2
≡−→

(=)
t3, and Γ À t1 ≤∗ t3,

where ≡−→
(=)

is the reflexive closure of ≡−→.

This property is illustrated by the following diagram. Note that
the completing edge of the diagram on the right-hand side is not a
subtype reduction (which would prove commutativity) but a transi-
tive subtyping judgement, which we represent by drawing a dotted
line instead of an arrow.

t2 //≡(=)
t3

t0 //≡

≤

OO

t1

≤∗

6.6.1 Case analysis
A full analysis of all cases can be found in [19]. The two main cases
of interest are shown below.

Top(c) //≡
Top

(λx ≤ a. b)(c) //≡

≤

OO

[x 7→ c]b

≤

OO
(1)

(λx ≤ a. C≤[a])(c) //≡
[x 7→ c]C≤[a]

(λx ≤ a. C≤[x])(c) //≡

≤

OO

[x 7→ c]C≤[c]

≤∗
(2)

Case (1) illustrates why (SRE-TOPAPP) is necessary. The term
Top(c) is not well-formed, but we must handle it because algorith-
mic subtyping is defined over all terms, not just well-formed terms.

Case (2) is important because it is the only case which requires
≤∗ as the completing edge; every other case has a single subtype
reduction on the completing edge. Were it not for case (2),

≤−→ and
≡−→ would have the diamond property, and would thus commute

globally.
In case (2), one edge of the diagram promotes a variable x to its

bounding type a. (The notation C≤[x] represents a term in which
x appears in a covariant position.) The other edge contracts the
redex, replacing x with c. The premise of (SRE-APP) tells us that
c ≤∗ a, and the congruence rules for reduction allow us to derive
C≤[c] ≤∗ C≤[a] on the completing edge.

However, notice what has happened: a simple promotion
C≤[x]

≤−→ C≤[a] on the left-hand side becomes a full subtyping
judgement C≤[c] ≤∗ C≤[a] on the right-hand side.

6.6.2 Commutativity by decreasing diagrams
Although the property described by Lemma 6.4 is not technically
local commutativity, it can be used to “tile” global commutativity
diagrams in much the same way, because the≤∗ relation is defined
in terms of reduction. Moreover, the property is compatible with
Van Oostrom’s technique of decreasing diagrams, which we show
as follows.

Assume we have assigned indices to reductions, as required by
Van Oostrom’s technique. The proof of commutativity then pro-
ceeds by induction. For the base case, we show that commutativity
holds for reduction sequences of index zero. We then show that if
commutativity holds for reduction sequences of index at most n,
then it holds for sequences of index at most n+ 1.

In case (2) above, if the reductions in c ≤∗ a have indices which
are strictly smaller than the spanning edges of the diagram, then we
can use commutativity as an induction hypothesis. Applying lemma

6.3 (transitivity elimination) to c ≤∗ a, yields c
≤
−� d

≡
�− a,

which gives us a diagram of true local confluence:

(λx ≤ a. C≤[a])(c) //≡
C≤[a] // //≡

C≤[d]

(λx ≤ a. C≤[x])(c) //≡

≤

OO

C≤[c]

≤

OOOO

Van Oostrom’s decreasing diagrams technique guarantees that
indices never increase during the tiling process. The indices of

the additional reductions on the completing edges (i.e. C≤[c]
≤
−�

C≤[d]
≡
�− C≤[a]) are therefore no greater than the indices of

c ≤∗ a, which are strictly smaller than the spanning edges. The
above diagram of local confluence is thus a decreasing diagram,
and the rest of Van Oostrom’s technique can be applied as usual.

To summarize, we can obtain a proof of global commutativity
from Lemma 6.4 by showing three things:
• Assign indices to reductions in some way.
• Show that all cases other than case (2) are decreasing diagrams.
• Show that in case (2), the indices of the reductions in c ≤∗ a

(the right completing edge) are strictly less than the indices of
the spanning edges, in which event case (2) is also a decreasing
diagram.

6.6.3 Almost, but not quite
Since c ≤∗ a is a premise of the reduction on the bottom edge,
there is an obvious definition of “index” that has the property we
want. The indices of c ≤∗ a are strictly smaller than the index of
the bottom edge if we define the index of a reduction to be the depth
of its derivation tree.

Unfortunately, this definition of “index” does not work, because
the diagrams used in the proof of Theorem 6.1 (confluence of ≡−→)
do not preserve depth. Since ≡−→ implies

≤−→, those diagrams are
cases that we must consider.

For example, consider the reduction (λx ≤ a. b)(c) ≡−→ (λx ≤
a. b)(c′). Contracting the left redex requires c ≤∗ a as a premise,
while contracting the right requires c′ ≤∗ a. The reduction c ≡−→
c′ essentially becomes incorporated into the subtyping judgement
used on the right, and that alters its depth.

6.7 Discussion of the proof
The proof of transitivity elimination for System λC has two parts:
(1) confluence of ≡−→, and (2) commutativity of ≡−→ and

≤−→.
When each part is considered separately, there is a proof tech-
nique that naturally applies. Confluence of ≡−→ is by induction on

the number of simultaneous reductions (i.e. the diamond property).
Commutativity is by induction on the index (or depth) of reduc-
tions, using the technique of decreasing diagrams.

Unfortunately, we are unable to combine these two induction
principles into a single proof. The diagrams for ≡−→ do not preserve
depth, and the diagrams for

≤−→ do not preserve the number of
simultaneous reductions. A complete proof of commutativity thus
requires a stronger induction principle. Strong normalization would
provide such a principle, but System λC suffers from Girard’s
paradox, and is not strongly normalizing.

In the absense of a suitable induction principle, it makes sense
to look for counter-examples to commutativity. A counter-example
would produce an infinite tiling by generating a sequence of sub-
type derivations that never decrease in size. Constructing such a
counter-example in System λC itself would be extremely difficult,
because an infinite tiling implies an infinite reduction sequence
[22]. The only known infinite reduction sequences arise from Gi-
rard’s paradox, and involve terms that are so large as to defy easy
analysis [17].

Practical applications of pure subtype systems (e.g. first-class
recursive modules) introduce fixpoints to the language, which make
the construction of non-terminating expressions much easier. Nev-
ertheless, even with fixpoints, we have been unable to construct a
counter-example. The partial proof of commutativity given here is
“close enough” to a full proof that all of the obvious possibilities
can be eliminated. Since each half of the proof has a valid induction
principle when considered on its own, any counter-example would
have to exploit some subtle interaction between the two halves.

7. An open problem
One benefit of formulating the subtype relation as an abstract re-
duction system is that there there is an extensive literature on ARSs
which could potentially be applied. Unfortunately, subtype reduc-
tion in System λC has a number of features that make it difficult to
study. To simplify matters, we have devised the following rewrite
system, which demonstrates confluence behavior that is very simi-
lar to subtype reduction in System λC, but is formulated as a con-
ventional ARS.

Terminals: A Non-terminals: C, D
Let = be the symmetric and transitive closure of −→.
A −→ C(A)
D(x, y) −→ x if x = y
D(x, y) −→ y if x = y

The above system is a conventional, first-order conditional
rewrite system, without variables, contexts, or other complications.
Much like subtype reduction, it gives rise to the following diagram
of local confluence:

b // // ·

D(a, b) //

OO

a

OOOO

The condition on D(a, b) −→ a tells us that a = b. Given
an appropriate induction hypothesis, we could transform a = b
into a transitivity-free form, giving us a −� · �− b, which are
the completing edges of the diagram. Notice that we complete
the diagram by using the condition on one of the rewrite rules, in
exactly the same way as in Section 6.6.2.

We conjecture that if a proof of confluence can be derived
for the above rewrite system, then that proof can be adapted to
show that

≤−→ and ≡−→ commute in System λC. Moreover, if a
counter-example to confluence can be derived for the above rewrite

system, then that counter-example can also be adapted to disprove
commutativity, and consequently type safety, for System λC.

8. History and Related Work
Transitivity elimination for systems with higher-order subtyping
is known to be a hard problem. The first version of System Fω≤,
developed by Steffen and Pierce [27], has an unusual restriction. In
their version, polymorphic functions use bounded quantification;
they are written as λX ≤ T. u, where T is a type, and u is an
object. Type operators, however, still use kinding; they are written
as λX : K. U , rather than λX ≤ T. U . This decision breaks the
symmetry of the language, and decreases its expressiveness.

The reason Steffen and Pierce made the restriction is because it
simplifies the meta-theory. As they write in a footnote: “The more
general form of this property... would be much more difficult to
prove” [27]. Compagnoni makes the same decision in her work
[10], and Chen does the same thing when adding subtyping to the
calculus of constructions [8] [9].

Zwanenburg’s theory of subtyping for Pure Type Systems [32]
is one of the closest theories in the literature to System λC. Zwa-
nenburg’s theory includes both bounded quantification and kinded
quantification. Although this seems like an unnecessary duplication
of syntax, there is a subtle reason for including both forms. Zwa-
nenburg only allows higher-order subtyping (i.e. point-wise subtyp-
ing) on the kinded operators; operators with bounded quantification
only have trivial subtypes.

Both Steffen and Pierce’s restriction, and Zwanenburg’s restric-
tion prevent bounded quantification from being combined with
higher-order subtyping. If this combination is prohibited, then con-
fluence diagram (2) in Section 6.6.1 does not arise, because x can-
not be promoted to a. As discussed previously, this particular case
is what causes the diamond property of

≤−→ and ≡−→ to fail. If the
diamond property did not fail, then we would have a proof that

≤−→
and ≡−→ commute, that transitivity is admissible, and that System
λC is sound.

To our knowledge, the only type theory in the literature which
successfully combines higher order subtyping and bounded quan-
tification is the version of System Fω≤ presented by Compagnoni
and Goguen [11]. They use a proof technique called “typed opera-
tional semantics”, in which every judgment comes equipped with a
proof that the terms in question have normal forms. This technique
can only be applied to languages that are strongly normalizing.

The proof techniques introduced in this paper demonstrate why
strong normalization is useful. In our proof, we are able to show
that subtype reductions commute locally, but we have been unable
to show that subtype reductions commutate globally. According to
Newman’s lemma, however, any system which is both locally con-
fluent (or locally commutive) and strongly normalizing is globally
confluent (or commutative) [6].

By formulating the subtype relation as an abstract reduction
system, we have a developed a general framework in which the
results of other theories can be compared. Every other theory of
subtyping in the literature has a restriction that, if applied to System
λC, would cause our proof technique to succeed as well.

8.1 Power types
Much of the theory of higher-order subtyping, and subtyping with
dependent types, was inspired by Cardelli’s early work on power
types [7]. The approach take by Cardelli is almost completely dual
to the one that we have pursued here. Rather than treating typing
as a special case of subtyping, power types allow subtyping to be
treated as a special case of typing. Nevertheless, the overall effect
is very similar to pure subtype systems, both in terms of expressive
power, and in the complexity (and intractability) of the meta-theory.

Cardelli gives the theory of power types, but not the meta-
theory. Aspinall has since examined the meta-theory in more detail,
but was unable to prove type safety [2]. Aspinall notes that the
fundamental problem is that it is hard to prove a generation (a.k.a.
inversion) lemma for power types, the same problem that we have
in System λC.

8.2 Singleton types
Aspinall has also studied the combination of subtyping with sin-
gleton types [1]. From our point of view, the most interesting thing
about subtyping with singletons is that it highlights yet another
symmetry between typing and subtyping. If {t} denotes the type
of all terms which are equal to t, then {t} ≤ T if and only if t : T .
Aspinall explicitly notes that because of this symmetry, any typ-
ing judgement can be formulated as a subtype judgement, and vice
versa [1].

9. Conclusion
It is tempting to conclude that the meta-theoretic difficulties which
plague System λC stem from the fact that it unifies types and ob-
jects. However, that conclusion would be incorrect. The problems
found in System λC can be found in any type system which has the
following three elements:

1. Type operators with bounded quantification.
2. Higher order (i.e. point-wise) subtyping.
3. A language of types which is not strongly normalizing.

Moreover, there are solid practical reasons for wishing to com-
bine these three elements together. For example, System Fω≤ is
widely used to model inheritance in object-oriented programming
languages [12], and bounded quantification is now standard in lan-
guages like Java and C#. General-purpose OO languages have fix-
points. Adding fixpoints by themselves to the level of objects in
System Fω≤ does not create any problems, because types are com-
pletely separate from objects. However, if one were to add both fix-
points and dependent types, then the existing proof of type safety
for System Fω≤ would break down, because dependent types are not
strongly normalizing in the presence of fixpoints.

This is an important result, because a number of researchers
are interested in adding dependent types and singleton types to
both object-oriented and functional languages. In OO languages,
dependent types are used for virtual types [20] [24], and virtual
clases [15]. In functional languges, they are used for modules [13]
[28].

We predict that future research will either face the same meta-
theoretic difficulties that plague System λC, or be forced to make
certain compromises in the type theory, as previous work in this
area has done.

References
[1] David Aspinall. Subtyping with singleton types. Eighth International

Workshop on Computer Science Logic, 1994.
[2] David Aspinall. Subtyping with power types. In Proceedings of

Computer Science Logic, pages 156–157, 2000.
[3] David Aspinall and Adriana Compagnoni. Subtyping dependent types.

Proceedings of 11th Annual Symposium on Logic in Computer Sci-
ence, 1996.

[4] Henk Barendregt. Lambda calculi with types. Handbook of Logic in
Computer Science, volume II, 1992.

[5] Jan Bergstra and Jan Klop. Conditional rewrite ruels: Confluence and
termination. Journal of Computer and System Sciences, 1986.

[6] Marc Bezem, Jan Willem Klop, and editors Roel de Vrijer. Term
Rewriting Systems. Number 55. Cambridge Tracts in Theoretical
Computer Science, 2003.

[7] Luca Cardelli. Structural subtyping and the notion of power type.
Proceedings of POPL, 1988.

[8] Gang Chen. Subtyping calculus of constructions (extended abstract).
Proceedings of the International Symposium on Mathematical Foun-
dations of Computer Science, 1997.

[9] Gang Chen. Dependent type system with subtyping: Type level tran-
sitivity elimination. Journal of Computer Science and Technology,
14(1), 1999.

[10] Adriana Compagnoni. Higher-Order Subtyping with Intersection
Types. PhD thesis, University of Nijmegen, 1995.

[11] Adriana Compagnoni and Healfdene Goguen. Typed operational se-
mantics for higher order subtyping. Information and Computation,
184(2):242–297, 2003.

[12] Adriana Compagnoni and Benjamin Pierce. Higher-order intersection
types and multiple inheritance. Mathematical Structures in Computer
Science, 6(5):469–501, 1996.

[13] Derek Dreyer, Robert Harper, and Karl Crary. Toward a practical
type theory for recursive modules. Technical Report CMU-CS-01-112,
2001.

[14] Derek Dreyer and Andreas Rossberg. Mixin’ up the ml module
system. Proceedings of the International Conference on Functional
Programming (ICFP), 2008.

[15] Erik Ernst, Klaus Ostermann, and William Cook. A virtual class
calculus. Proceedings of POPL, 2006.

[16] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types.
Cambridge Tracts in Theoretical Computer Science, 1989.

[17] Douglas Howe. The computational behavior of girard’s paradox.
Proceedings of the Symposium on Logic in Computer Science, 1987.

[18] DeLesley Hutchins. Eliminating distinctions of class: Using proto-
types to model virtual classes. Proceedings of OOPSLA, 2006.

[19] DeLesley Hutchins. Pure Subtype Systems: A Type Theory for Exten-
sible Software. PhD thesis, University of Edinburgh, 2009.

[20] Atsushi Igarashi and Benjamin Pierce. Foundations for virtual types.
Proceedings of ECOOP, 1999.

[21] Fairouz Kamareddine. Typed λ-calculi with one binder. Journal of
Functional Programming, 15(5), 2005.

[22] Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer. A
geometric proof of confluence by decreasing diagrams. Journal of
Logic and Computation, 10(3), 2000.

[23] Zhaohui Luo. Computation and reasoning: a type theory for computer
science. Oxford University Press, Inc., New York, NY, USA, 1994.

[24] Martin Odersky, Vincent Cremet, Christine Rockl, and Matthias
Zenger. A nominal theory of objects with dependent types. Proceed-
ings of ECOOP, 2003.

[25] Benjamin Pierce. Bounded quantification is undecidable. Information
and Computation, pages 131–165, 1994.

[26] Benjamin Pierce. Types and Programming Languages. MIT Press,
2002.

[27] Martin Steffen and Benjamin Pierce. Higher-order subtyping. Univer-
sity of Edinburgh Technical Report ECS-LFCS-94-280, 1994.

[28] Christopher Stone. Singleton Kinds and Singleton Types. PhD thesis,
Carnegie Mellon University, 2000.

[29] Masako Takahashi. Parallel reductions in λ-calculus. Informationa
and Computation, 118(1):120–127, 1995.

[30] Vincent van Oostrom. Confluence by decreasing diagrams. Theoreti-
cal Computer Science, 126(1), 1994.

[31] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 2004.

[32] Jan Zwanenburg. Pure type systems with subtyping. International
Conference on Typed Lambda Calculi and Applications, 1999.

